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Background: Parameter-Efficient Fine-Tuning

m Models (GPTs, Vision Transformers) are becoming increasingly large.

m Full parameter fine-tuning is resource-intensive.
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Background: Parameter-Efficient Fine-Tuning

m Models (GPTs, Vision Transformers) are becoming increasingly large.

m Full parameter fine-tuning is resource-intensive.

Parameter-Efficient Fine-Tuning (PEFT): Adjusting a small subset of parameters.
m Higher Performance.

m Less parameter storage.
Issues: lack of generalizability & forgetting pre-trained knowledge.

Goal: improve generalization & retain pre-trained knowledge.
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Motivation: Theorem 1

Theorem 1: Smaller gradient norm and larger dataset lead to better generalization
on unseen data.

Poor generalization Good generalization
Sharper Flatter
minimum, minimum

+ Small Large
training dataset + training dataset

Large gradients norms Small gradients norms
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Motivation: Theorem 1

Theorem 1: Smaller gradient norm and larger dataset lead to better generalization
on unseen data.

Poor generalization Good generalization
Sharper Flatter
minimum, minimum

+ Small Large
training dataset + training dataset

Large gradients norms Small gradients norms
Robustto  Rich knowledge for
unseen data unseen data
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Solution for better generalization and retain knowledge

Smaller Gradients Norms
Larger dataset
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Solution for better generalization and retain knowledge

Smaller Gradients Norms <« Regularize gradients
Larger dataset
small dataset in downstream tasks
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Pre-trained
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Prop 1. Naive alignment does not guarantee smaller gradient norms
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Solution for better generalization and retain knowledge

Smaller Gradients Norms <« Regularize gradients
Larger dataset
small dataset in downstream tasks
Retain knowledge by fine-tuned pre-trained alignment (FPA)

af —
5 1551l i
Pre-trained ‘ 2" ] ey o
g N0 204 \
le4 \
x /o) = FOII3 ¢ N~
Fine-tuned f( ) A=1e-35¢-30.010.05 0.1 0.5 1 5 10 50 100 500 le3 5e3 led Sed
00 + A6 Gradient norms & reg. strength A (CIFAR-100, ViT-B/16)

Prop 1. Naive alignment does not guarantee smaller gradient norms
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Our method: PACE

To regularize gradients and align fine-tuned pre-trained models,
PACE perturbs adapter features and enforces consistency across perturbations.
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W &bo, AW &Ab: pre-trained/adapter linear weights;
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Our method: PACE
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W &bo, AW &Ab: pre-trained/adapter linear weights;
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Our method: PACE
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Our method: PACE

To regularize gradients and align fine-tuned pre-trained models,
PACE perturbs adapter features and enforces consistency across perturbations.

Transformer block with adapter perturbed by noise
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Adapter Ah and
—4 pre-trained hy
Tra]g?g%rl;ner in linear layer h

W &bo, AW &Ab: pre-trained/adapter linear weights; : sample; L: number of blocks
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Our method: PACE
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Our method: PACE

To regularize gradients and align fine-tuned pre-trained models,
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PACE improves generalization and retains pre-trained knowledge
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PACE: Theorem 2

Theorem 2: PACE regularizes first- and second-order gradients
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& o7 (6)
Large grad norm Small grad norm
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PACE: Theorem 2

Theorem 2: PACE regularizes first- and second-order gradients

2z TN
12e3
Large / Baseline
difference 9e3 l‘\ —— 4PACE
6)e 6e3
\;‘
Large grad norm s> Small grad norm 3e3
epoch=" 100 200 300
0: model weights; z: noise. Gradient norms on CIFAR-100 w/ ViT-B/16
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PACE:Theorem 3

Theorem 3: PACE minimize fine-tuned pre-trained distance to retain knowledge.

f(60)
°
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Theorem 3: PACE minimize fine-tuned pre-trained distance to retain knowledge.
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Large FP-distance
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PACE:Theorem 3

Theorem 3: PACE minimize fine-tuned pre-trained distance to retain knowledge.

D
e ——— - 140 / i

-~ ° REN I Baseline

AR (YY) ™ S, 100 / ——— +PACE
°

\ [(W f (00+z1®A0)/ f (,O)/'}(a +A9}' 60 //ﬁ

TS L 8/ (0o +2,000)_ - -’ S 201/

== - PACE epoch= 100 200 300
Large FP-distance ==——3p Small FP-distance
Distance between fine-tuned and pre-trained

models (D7) on CIFAR-100 w/ ViT-B/16.
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Experiments: Image Classification

Results on VTAB-1K with ViT-B/16.

Method Natural Specialized Structured -
3 g = = E % B2 o g é) S
8 = 3 <125 % 5|8 & 28 2835 2 2|2
= g 5 Z 2% 2 % ¢|% = S g 7 9 2 2|¢=
Eéggfgm‘aae-aégggeaaoog
S S o E & 5 3|8 &8 & 2|00 A2 % % % Z|=
Full 68.9 87.7 64.3 97.3 86.9 87.4 38.8|79.7 95.7 84.2 73.9]56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1{68.9
Linear 64.4 85.0 63.2 97.0 86.3 36.6 51.0|78.5 87.5 68.5 74.0|34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2|57.6
VPT-Deep |78.8 90.8 65.8 98.0 88.3 78.1 49.6|81.8 96.1 83.4 68.4]68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8|72.0
Adapter 69.2 90.1 68.0 98.8 89.9 82.8 54.3|84.0 94.9 81.9 75.5/80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6|73.9
AdaptFormer|70.8 91.2 70.5 99.1 90.9 86.6 54.8|83.0 95.8 84.4 76.3|81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1|74.7
LoRA 67.1 91.4 69.4 98.8 90.4 85.3 54.0|84.9 95.3 84.4 73.6(82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0|74.5
NOAH 69.6 92.7 70.2 99.1 90.4 86.1 53.7|84.4 95.4 83.9 75.8(82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2|74.2
RepAdapter |69.0 92.6 75.1 99.4 91.8 90.2 52.9(87.4 95.9 87.4 75.5|75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9|76.1
RLRR 75.6 92.4 72.9 99.3 91.5 89.8 57.0|86.8 95.2 85.3 75.9|79.7 64.2 53.9 82.1 83.9 53.7 33.4 43.6|76.7
GLoRA 76.4 92.9 74.6 99.6 92.5 91.5 57.8|87.3 96.8 88.0 76.0|83.1 67.3 54.5 86.2 83.8 52.9 37.0 41.4|78.0
Baseline 74.9 93.3 72.0 99.4 91.0 91.5 54.8|83.2 95.7 86.9 74.2183.0 70.5 51.9 81.4 77.9 51.7 33.6 44.4|76.4
+PACE 79.0 94.2 73.6 99.4 92.4 93.7 58.0|87.4 96.4 89.3 77.1|84.9 70.9 54.9 84.3 84.7 57.3 39.3 44.8|79.0
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Experiments: Text classification & generation

Results for GLUE w/ RoBERTay,,s.. Matthew’s/Pearson
correlation for COLA/STSB, and accuracy for others.

Results for GSM-8K w/
Phi-3-mini-4k-instruct.

Method | COLA _ SISB _ MRPC _ RIE _ QNLI _ SST2 | Avg. Method ‘Accuracy
Full 63.6 912 902 787 928 948 | 8. -

BitFit 62.0 90.8 927 815 918 937 | 854 Pre-trained 62.01
Adapt 62.6 90.3 884 759 930 947 | 842 Full 73.16
VeRA 65.6 90.7 895 787 918 946 | 852

LoRA 634 915 897 866 933 951 | 866 LoRA 75.66
+PACE 66.2 92.0 914 869  93.6 95.6 | 87.6 +PACE 78.77
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Conclusions

Conclusions:

m PACE perturbs adapter features and enforces consistency regularization across
perturbations.

m PACE regularizes gradients for improved generalization and reduces
fine-tuned pre-trained distance to retain knowledge.
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