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Goal
Background: Pre-trained transformers are growing larger. While
Parameter-Efficient Fine-Tuning (PEFT) improves performance by
tuning a small subset of parameters, it struggles with limited gener-
alization and suffers from forgetting pre-trained knowledge.

Goal: Improve generalization & retain pre-trained knowledge.

Pipeline
Step 1: Add multiplicative noise to adapter features.
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Step 2. Enforce consistency regularization across perturbations.
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W 0, b0: pre-trained linear layer weights; ∆W ,∆b: adapter weights; z: noise, N : Gaussian distribution; x:

sample; L: number of blocks; σ2: noise variance; f1, f2: fine-tuned models with different noises.

Method
Thm. 1: Smaller
norms of gradients
& larger datasets im-
prove generalization
on unseen data.
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Prop. 1: For small dataset, aligning fine-tuned model with pre-trained
one (FPA) retains pre-trained knowledge but cannot reduce gradients.
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Grad. norms & reg. strength λ (CIFAR-100, ViT-B/16)

Solution: PACE perturbs adapter features & enforces consistency.

Thm. 2: PACE regularizes gradient norms.
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Gradient norm on CIFAR-100 w/ ViT-B/16.

Thm. 3: PACE reduces distance between fine-tuned & pre-trained.
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FP-distance: between fine-tuned & pre-trained models; θ0: pre-
trained weights; ∆θ: adapters weights; z1,z2 „N p1,σ2I).
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Distance between fine-tuned and pre-trained
models (Dfp) on CIFAR-100 w/ ViT-B/16.

Experiments
Results on VTAB-1K with ViT-B/16. Mean Acc. is the average of group mean values.
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Full 68.9 87.7 64.3 97.3 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
VPT-Deep 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
Adapter 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.9
AdaptFormer 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
LoRA 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
NOAH 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 74.2
RepAdapter 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 76.1
RLRR 75.6 92.4 72.9 99.3 91.5 89.8 57.0 86.8 95.2 85.3 75.9 79.7 64.2 53.9 82.1 83.9 53.7 33.4 43.6 76.7
GLoRA 76.4 92.9 74.6 99.6 92.5 91.5 57.8 87.3 96.8 88.0 76.0 83.1 67.3 54.5 86.2 83.8 52.9 37.0 41.4 78.0
Baseline 74.9 93.3 72.0 99.4 91.0 91.5 54.8 83.2 95.7 86.9 74.2 83.0 70.5 51.9 81.4 77.9 51.7 33.6 44.4 76.4
+PACE 79.0 94.2 73.6 99.4 92.4 93.7 58.0 87.4 96.4 89.3 77.1 84.9 70.9 54.9 84.3 84.7 57.3 39.3 44.8 79.0

Results on FGVC with ViT-B/16.
* denotes using augmented ViT by AugReg.

Method CUB NA- Oxford Stan. Stan. Mean
-2011 Birds Flowers Dogs Cars Acc.

Full 87.3 82.7 98.8 89.4 84.5 85.9
Linear 85.3 75.9 97.9 86.2 51.3 79.3
VPT 88.5 84.2 99.0 90.2 83.6 89.1
LoRA 88.3 85.6 99.2 91.0 83.2 89.5
SSF* 89.5 85.7 99.6 89.6 89.2 90.7
ARC* 89.3 85.7 99.7 89.1 89.5 90.7
RLRR* 89.8 85.3 99.6 90.0 90.4 91.0
LoRAmul+VPTadd 88.9 87.1 99.4 91.2 87.5 90.8
+PACE 89.8 87.3 99.5 92.2 88.8 91.5

Results on domain adaptation with ViT-B/16
pretrained on ImageNet-21K.

Method Source Target Mean
ImageNet -Sketch -V2 -A -R Acc.

Full 63.9 18.5 52.5 3.2 21.2 31.8
Linear 67.9 14.4 60.8 9.4 25.6 35.6
Adapter 70.5 16.4 59.1 5.5 22.1 34.7
VPT 70.5 18.3 58.0 4.6 23.2 34.7
LoRA 70.8 20.0 59.3 6.9 23.3 36.0
NOAH 71.5 24.8 66.1 11.9 28.5 40.5
GLoRA 78.3 30.6 67.5 13.3 31.0 44.1
LoRAmul+VPTadd 78.3 30.6 68.5 14.1 32.5 44.8
+PACE 79.0 31.8 69.4 16.3 35.2 46.3

Results for GLUE w/ RoBERTabase. Matthew’s correlation for
COLA, Pearson correlation for STSB, and accuracy for others.
Method COLA STSB MRPC RTE QNLI SST2 Avg.
Full 63.6 91.2 90.2 78.7 92.8 94.8 85.2
BitFit 62.0 90.8 92.7 81.5 91.8 93.7 85.4
Adapt 62.6 90.3 88.4 75.9 93.0 94.7 84.2
VeRA 65.6 90.7 89.5 78.7 91.8 94.6 85.2
LoRA 63.4 91.5 89.7 86.6 93.3 95.1 86.6
+PACE 66.2 92.0 91.4 86.9 93.6 95.6 87.6

Results for GSM-8K using
Phi-3-mini-4k-instruct.
Method Accuracy

Pre-trained 62.01

Full 73.16

LoRA 75.66

+PACE 78.77
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