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W, bo: pre-trained linear layer weights; AW, Ab: adapter weights; z: noise, N': Gaussian distribution; a:
2

FP-distance: between fine-tuned & pre-trained models; @¢: pre-
trained weights; A@: adapters weights; z1, zo ~N (1, 0°1).

Distance between fine-tuned and pre-trained
models (D/?) on CIFAR-100 w/ ViT-B/16.

sample; L: number of blocks; o“: noise variance; f1, f2: fine-tuned models with different noises.
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